5-Methylcytosine and 5-Hydroxymethylcytosine Spatiotemporal Profiles in the Mouse Zygote

نویسندگان

  • Juliette Salvaing
  • Tiphaine Aguirre-Lavin
  • Claire Boulesteix
  • Gaëtan Lehmann
  • Pascale Debey
  • Nathalie Beaujean
چکیده

BACKGROUND In the mouse zygote, DNA methylation patterns are heavily modified, and differ between the maternal and paternal pronucleus. Demethylation of the paternal genome has been described as an active and replication-independent process, although the mechanisms responsible for it remain elusive. Recently, 5-hydroxymethylcytosine has been suggested as an intermediate in this demethylation. METHODOLOGY/PRINCIPAL FINDINGS In this study, we quantified DNA methylation and hydroxymethylation in both pronuclei of the mouse zygote during the replication period and we examined their patterns on the pericentric heterochromatin using 3D immuno-FISH. Our results demonstrate that 5-methylcytosine and 5-hydroxymethylcytosine localizations on the pericentric sequences are not complementary; indeed we observe no enrichment of either marks on some regions and an enrichment of both on others. In addition, we show that DNA demethylation continues during DNA replication, and is inhibited by aphidicolin. Finally, we observe notable differences in the kinetics of demethylation and hydroxymethylation; in particular, a peak of 5-hydroxymethylcytosine, unrelated to any change in 5-methylcytosine level, is observed after completion of replication. CONCLUSIONS/SIGNIFICANCE Together our results support the already proposed hypothesis that 5-hydroxymethylcytosine is not a simple intermediate in an active demethylation process and could play a role of its own during early development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.

Although global erasure of DNA methylation has been observed in zygotes and primordial germ cells, the responsible enzyme(s) have been elusive. The demonstration that members of the Tet (ten eleven translocation) family of proteins are capable of catalyzing conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC) raises the possibility that Tet proteins may participate in t...

متن کامل

Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced γH2AX accumulation.

In the mouse zygote, Stella/PGC7 protects 5-methylcytosine (5mC) of the maternal genome from Tet3-mediated oxidation to 5-hydroxymethylcytosine (5hmC). Although ablation of Stella causes early embryonic lethality, the underlying molecular mechanisms remain unknown. In this study, we report impaired DNA replication and abnormal chromosome segregation (ACS) of maternal chromosomes in Stella-null ...

متن کامل

Analysis of TET Expression/Activity and 5mC Oxidation during Normal and Malignant Germ Cell Development

During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the ba...

متن کامل

Tissue-specific Distribution and Dynamic Changes of 5-Hydroxymethylcytosine in Mammalian Genomes*

Cytosine residues in the vertebrate genome are enzymatically modified to 5-methylcytosine, which participates in transcriptional repression of genes during development and disease progression. 5-Methylcytosine can be further enzymatically modified to 5-hydroxymethylcytosine by the TET family of methylcytosine dioxygenases. Analysis of 5-methylcytosine and 5-hydroxymethylcytosine is confounded, ...

متن کامل

GSE Is a Maternal Factor Involved in Active DNA Demethylation in Zygotes

After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012